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The interfacial shape of two immiscible simple fluids in a vertical cylinder which 
oscillates about its axis is investigated using the theory of domain perturbations. The 
perturbation stresses are expressed by integrals over the history of the deformation. 
At first order the azimuthal velocity field satisfies the requirements of continuity in 
velocity and shear stresses across the interface. At second order the solution consists 
of a mean part and a time-periodic part varying at twice the frequency of the cylinder. 
The mean problem is inverted for the mean secondary flow, pressure and interfacial 
shape. Experimental data for two polymeric oils (TLA227 and STP) show qualitative 
agreement with theoretical predictions for the mean interfacial shapes. 

1. Introduction 
The interfacial shape between two immiscible fluids at rest is governed by 

capillarity (i.e. the balance between interfacial tension and hydrostatic pressures). 
When fluids are set in motion, the interface changes its shape. The dependence of 
the interfacial shape on the states of stress can be used to determine some rheological 
properties of the fluids. 

The free surface on a simple fluid between cylinders rotating a t  different speeds 
has been studied by Joseph & Fosdick (1973), using the method of domain 
perturbations. Assuming a rest state with a flat free surface, the authors carried out 
the analysis through the fourth order. Their solution exhibits the following features. 
A primary Couette flow field exists a t  first order. At second order the first deviations 
of pressure and free-surface shape from the hydrostatic pressure and the flat position 
are observed. Alteration to the azimuthal velocity field occurs next a t  third order. 
And a t  fourth order the first secondary motion appears, together with alterations in 
the pressure field and the free-surface shape. 

A comparison between the second-order theoretical free-surface shapes and experi- 
mental data for rods rotating in STP (a solution of polyisobutylene in oil) was made 
by Joseph, Beavers & Fosdick (1973). They got good agreements for small angular 
velocities. More-extensive rotating-rod experiments, with efforts to control the 
wetting angle and to establish the dependence of the climb on temperature, were 
reported later by Beavers & Joseph (1975). 

The free surface on a simple fluid between cylinders undergoing torsional oscillations 
has also been studied through the second order by Joseph & Beavers (1976) with 
particular reference to a rod oscillating in an infinite fluid. The first-order solution 
gives a time-periodic azimuthal velocity field varying with the forcing frequency. The 
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solution at  second order consists of a mean part and a time-periodic part varying a t  
twice the frequency of the rod. When the angular velocity w of the rod approaches 
zero, the solution for the mean part reduces to the second-order solution of the steady 
problem mentioned above. The predicted mean rise a t  the rod was compared with 
experimental data for TLA227 (a solution of a methacrylate copolymer in oil). For 
some small range of w ,  there is a good agreement between theory and experiment. 
The range of agreement can be increased by appropriate choices for the decay 
constants in the material relaxation functions G(s) and y(sl, sz). Additional experi- 
mental measurements with Paratone 715 fluid were reported by Kolpin, Beavers & 
Joseph (1980). 

A distinction between the first-order solutions of the two problems above is that 
the azimuthal velocity distribution in the steady case is a Couette flow, and therefore 
independent of the fluid properties, whereas the velocity distribution in the unsteady 
case depends on fluid properties. This special feature in the steady case is convenient 
for analyses of rotating rods in superimposed immiscible fluids, in the sense that the 
second-order solutions for such analyses are much the same as the one with a single 
fluid. Then, the only minor distinction between a free surface and an interface is that 
the fluid density in the surface-shape equation is to be replaced by the difference in 
the densities of the two neighbouring fluids. This fact is fully exploited in the work 
of Beavers & Joseph (1977) to magnify the Weissenberg effects. 

The present work deals with the interfacial shape in rotating simple fluids. Our 
analysis falls in the framework of the papers mentioned above. The current study 
involves two simple fluids contained in a vertical oscillating cylinder. The boundary 
conditions on the interface are such that the interface is a streamline, the velocities 
and shear stresses are continuous across the interface, and the normal stresses are 
balanced by the interfacial tension. 

The plan and findings of this paper are as follows. The mathematical formulation 
and the corresponding perturbed problems at first and second orders are described 
in $2. We next give the first-order solution, and its asymptotic form when the angular 
velocity of the cylinder w approaches zero. At small w the azimuthal velocity in a 
fluid consists of a solid-body oscillation and a deviation whose magnitude is 
proportional to the Reynolds number of the fluid. The z-dependent part of this 
deviation is important only in the neighbourhood of the interface, and in fact vanishes 
if the kinematic viscosities of the fluids are the same. We then derive the problem 
for the mean motion at  second order, and give its solution in $94 and 5. In contrast 
with the earlier works (Joseph et al. 1973; Joseph & Heavers 1976), there is a 
second-order mean motion in our problem. The stream function for the mean motion 
is decomposed into particular and homogeneous parts. The former is obtained using 
the appropriate Green function, whereas the latter is expressed in terms of biorthogonal 
series. Formulae for the mean pressure and interfacial shape are presented in @5.2 
and 5.3. In the limit w+O the asymptotic interfacial shape is parabolic (i.e. as in 
solid-body oscillations). Experiments with the two simple fluids TLA227 and STP 
are described in $6. The mean distortion of the interface is much larger than the 
time-periodic distortion. Comparison between theoretical results and experimental 
data (in $ 7 )  show a good qualitative agreement for some range of small w .  
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2. Mathematical formulation 
2.1. Description of the full problem 

Two immiscible, incompressible, simple fluids fill the interior of an infinitely tall, 
vertical cylinder of inside radius a. When the cylinder is stationary, the fluids are 
a t  rest with fluid (1)  above fluid (21, and the rest configuration is determined by 
capillarity. If the boundary condition for the interface a t  the cylinder wall is properly 
chosen (see Tieu 1983), or if the interfacial tension parameter is negligibly small, then 
the interface between the two fluids a t  rest is horizontally flat. We choose cylindrical 
coordinates at the centre of the flat interface, and the z-axis coincides with the axis 
of the cylinder. The interior of the stationary cylinder is partitioned into 

v ( ~ )  = { ( ~ , e , z ) :  R E [ O , ~ ] , B E [ O , ~ ~ C ) , ~  2 01, 

qZ, = { ( R , ~ , ~ ) : R E [ O , ~ I , ~ E [ O , ~ ~ ) , ~ ~ O }  

When the cylinder is in sinusoidal motion in the &direction, U = e, EU sin wt the 
interface is symmetrically deformed about the z-axis. The position of the interface 
is then described by 

z = h(r, t ;  E ,  w )  = h(r, t ;  E ) ,  

where E is the perturbation parameter, and the implicit dependence on w is understood 
in h(r, t ;  8 ) .  The upper fluid (1) is then confined to a new domain 

V(l,e) = { ( r , e , z ) : r ~ [ O , a l , e ~ [ O , 2 n ) , z  2 h),  

and the bottom fluid (2) to 

V(z,E) = ((r,O,z):rE[O,a], t9~ [0 ,2n) , z  < h). 

Figure 1 depicts the deformed spatial configuration of the fluids. We are interested 
in the mean interfacial shape h(r ; E ) ,  up to second order in E .  The mean of a periodic 
function g(x,  t ; E )  = g(x, t + T ;  E )  is defined as follows : 

g ( x ; e )  = &JoTg(x,t;t)dt. 

Equations governing the motion in V(., h )  are 

w.u=o (2.2) 

where U, d, and S are the velocity vector, reduced pressure and extra stress tensor 
respectively. Subscriptsj (i = 1 ,2 )  are used to indicate fluids (1) and (2) respectively. 
There is no slip between the cylinder wall and the fluids: 

U(j)(a,8,z,t;e) = e,sasinwt (j = 1,2) .  (2.3) 

The velocity along the centreline is bounded, i.e. 

U,,,(O, 8, z,  t ;  E )  is finite. 

On the interface z = h(r, t ;  E )  we require that the shear stresses and velocities are 
continuous. We introduce the notation 
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17 = e, EU sin wt 

FIGURE 1. Interfacial shape between two immiscible fluids in an oscillating cylinder. 

Then the shear component in the &direction satisfies 

and the shear component in the tangential direction satisfies 

The velocity vector U(r,  8,  h, t ; E )  is continuous across z = h :  

1U-J = 0.  

The kinematic condition at the interface requires that 

where w, u are radial and axial components of U. Finally, the normal stress along 
the interface must be balanced by the interfacial tension multiplied by the mean 

where 

(2.10) 
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Equation (2 .9)  is a differential equation for h(r, t ;  E ) ,  whose boundary conditions 
may be taken as 

or I (2.11) 

The first condition of (i) and (ii) above expresses the requirement that the interface 
be smooth at r = 0. The second condition of (i) expresses that the interface wets the 
cylinder wall at an angle in - K ,  where K = tan-lcc. (The convention adopted here is 
that a liquid wets a solid surface when K > 0, a liquid does not wet a solid surface 
when K < 0. Neutral wetting corresponds to K = 0.) The second condition of (ii) holds 
whenever the contact line is fixed. When either the set of boundary conditions (i) with 
a(t;  0) = 0, or the set (ii) holds, the static interface is horizontally flat h(r, t ;  0) = 0 
(see Tieu 1983). 

As IzI + O  we require that the solutions 

(2.12) 

are independent of z. 

interfacial shapes must satisfy the constraint 
Since the flows are incompressible, the volumes are conserved ; therefore allowable 

r a  

J -- rh(r, t ;  E) dr = 0. (2.13) 
0 

This constraint determines the pressure difference across the interface. 

2.2. Domain perturbation of the rest state 

We expand the extra stress S around the rest state and take the expansion up to 
terms of order two. For this second-order approximation (Joseph 1976) we have 

S N lom G(s)n(t-s,s)ds+ lom JOm y(S1,S2)n(t-s1,8)n(t-s2,E)dslds2, (2.14) 

where G(s), y(sl, s,) are the linear end quadratic relaxation functions of the fluid, and 
ll is the time derivative of relative strain tensor at some past time T = t - s. The three 
material constants which appear in the constitutive expression for the extra stress 
of a second-grade fluid, are defined in terms of G(s) and "/sl, 8,) as follows : 

P =  JOm G(s) ds, al = -Jam sG(s) ds, a, = Jam jam y(sl, s,) ds, ds,. (2.15a, b, c) 

The components of the tensor ll are given by 

in which x t ( x ,  T ;  E )  is the relative position vector 

(2.15d) 

( 2 . 1 6 ~ )  
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such that xin) (x, t )  = 0 for VnE N+. The velocity vector U(X,  7 ;  e) of a particle a t  
x t ( x ,  7 ;  E )  can also be expanded into a series: 

W 

U(x,7;e) = c €"U'")(S,T). 
n-1 

And the relation between x,<")(x, 7) and U(")(x, 7 )  is as follows: 

xSn)(x, 7) = jt7 U(" ) (x ,  7') dT'. 

(2.16b) 

(2.17) 

Joseph (1976) formed expressions for the extra stress S, up to second order in E ,  by 
expanding (2.15d), using (2.16a, b) and then substituting the resulting expression into 
(2.14). He found 

s = €S1[ U")] + E2(S1[ U'"] + S2[ U")]) + O ( E 2 ) ,  (2.18) 
where 

( 2 . 1 9 ~ )  

+ [A,[ U<') (a)] V&) (s)]? ds 

and the first Rivlin-Ericksen tensor A,[ v] is defined as 

A,[U(x,s)] = VU+[VU]T. (2.20) 

Since the above problem, defined by (2.1)-(2.13), is posed in domains symmetric 
with respect to 8, and the boundary data are independent of 8, we may look for 
axisymmetric solutions : 

U(i)(~,t; €1 = U(&,z,t; €1 = ~ ( ~ ) e , + v ( ~ ) e , + u ( ~ ) e , ,  

@@,(x, t ;  e) = @(i) ( r ,z , t ;  e) (i = 1,2).  

Furthermore, when we change E to - E  we reverse the direction of the azimuthal 
velocity component, but leave the velocity components in the radial and axial 
directions, the reduced pressure, and the interface deformation h(r,  t ;  E )  unaltered. In  
other words, the functions .uV,(x, t ;  e) are odd in e, while wU) ,  uu), and h(r, t ;  E )  are 
even functions in E .  

We will resolve the above problem by the method of domain perturbations. Details 
of this method can be found elsewhere (Joseph & Fosdick 1973; Joseph & Beavers 
1977). Here we shall assume that there is a solution of the form: 

(2.21) 

where x E Vu, E )  and XE V(j) = V"cj, o), for every j = 1,2 .  The shift map which carries 
V(j) into V(j, E )  is defined as follows: 

r = R, B = 8, z = Z+h( r , t ;  6). (2.22) 
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The total and partial 'derivatives' of a functionf(x(X, t ,  E ) ,  t ;  E )  are defined as follows: 

1 dn 
f n l ( X ,  t )  = --f(x, t ;  E )  1 , keeping X fixed, 

n! den B - 0  

whereas 
1 an 

f'")(X,t) - - - f ( x , t ; ~ )  , keepingxfixed 
n! a E n  

( 2 . 2 3 ~ )  

(2.23 b) 

These derivatives are related by (2.22). 

with do] = 0 ;  (b)  fixed contact line; (2.11)(ii); (c )  zero interfacial tension, CT = 0. 

flat. We then have 

We will restrict our analysis to the following cases: (a )  neutral wetting; (2.11)(i) 

When any one of these three cases holds, the interface shape a t  the rest state is 

q!] = @\;,I -constant Oo = 0, 

and = 0. An important consequence of hIol = 0 and h(r,  t ; e )  being an even function 
of E ,  is that the total and partial derivatives (2.23a, b) are interchangeable up to second 
order (n  = 2) .  Sine cP(~)  and h are even in e ,  (2.21) becomes 

where 

2.3. Governing equations at Jirst and second orders 
The governing equations for the coefficients of E are as follows : 

(2.25 b) 

( 2 . 2 5 ~ )  

(2.25 d )  

(2.25 e )  

(2.258 

(2.259) 

Equations ( 2 . 2 5 ~ 4 )  come from (2.1)-(2.4), while (2 .25eg)  come from (2.5), (2.7) and 
(2.12). Other boundary conditions, e.g. (2.6) and (2.8) and the balance ofnormal stress 
(2.9) are identically satisfied at first order in E because the radial and axial velocity 
components and the interface shape are even functions in E .  
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The governing equations for the coefficients of e2 in (2 .24)  are as follows: 

a 
P( j )  t UU,2 + V@(j)2 - v * s1r U(j)2l = v SZ[ U(,,lI -P( j )  U(j)l* v U(j,l, (2 .26a)  

V* U(j)2 = 0 in 5,) ; (2 .26b)  

U(j)&, Z,t)  = 0, ( 2 . 2 6 ~ )  

(2.26d)  U(j)z(O, 2, t )  is bounded, 

(2 .26e)  

(2.26fl 

(2.26 h )  

(2 .26 i )  

Equations ( 2 . 2 6 a d )  come from (2 .1)-(2.4) ,  while (2 .26e-g)  and (2 .26h , i )  come from 
(2 .6)-(2.8)  and (2 .12) .  The boundary condition (2 .5 )  is identically satisfied at second 
order because U(j)2 are independent of 8, and the azimuthal velocity components are 
odd functions in E .  The interfacial shape correction h2(R ,  t )  satisfies 

at 2 = 0, such that 

(i) 

or 

(ii) (2.28 b )  
a 

R-0 R-u 
where 

Jou Rh,(R,  t )  dR = 0. (2 .29)  

Equations (2.27)-(2.29) come from ( 2 . 3 ) ,  (2 .11)  and (2 .13)  respectively. 
When the interfacial tension a is zero, h, must satisfy (2 .27)  with vanishing 

right-hand side, and the constraint (2 .29 ) .  
We first solve the first-order problem (2 .25 ) .  When U,,,,(X, t )  is known, the pathline 

x;’)(X, t )  can be found using (2 .17 ) .  Then the right-hand side of (2 .26a)  is completely 
determined. The next step is to solve the problem (2 .26)  for U(j)2,  @(j)2, and a problem 
of the type (2.27)-(2.29) for h,. 

Generally speaking, when perturbation data are periodic with frequency 0 / 2 n  then 
the first-order solution is also periodic with the same frequency, and the second-order 
solution consists of a mean part and a periodic part varying at twice the frequency 
(i.e. w / n ) .  This observation can be verified by examining the forcing functions on the 
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right-hand sides of (2.26). However, in our experiments, the mean part dominates 
the interface shape, with only a small w/mperiodic deviation from the mean. We shall 
derive the solution for the mean part to compare with experiments. 

3. The solution at first order 
3.1. Form of the Jirst-order solution 

The only non-vanishing, azimuthal component y,,(R, 2, t)  (i = 1,2) of the velocity 
vector at first order satisfies the following system of equations : 

(3.1) 

(3.2) 

(3.3) 

?,)(u, 2, t )  = a sin wt ,  

V,,,(O, 2, t)  is finite, 

[ r jnmG(s)g(R,Z7t -s )ds  = I[V(R,Z,t)] = 0 along z = 0, (3.4),(3.5) 4 
- y,)(R, 2, t)l 
a 
az = 0. 

IZl+m 

We construct a solution of the form 

(3.7) Yn(R, 2, t) = q,,(R) e h  Z e i w t  +conjugate, 

in which qn(R)  and/3(,, can be complex or real, and i = 2/ - 1. Substituting (3.7) into 
(3.1)7 we obtain 

[Ptj, iwpti, e h Z  eiwt + conjugate] 

1 = G(,,(s)[(y,, ++-$+/3t, P'. P P,,)ehZeiwct-s)+conjugate ds, (3.8) 

yu , (w)  = Jam G ( , , ( ~ ) e - ~ ~ ~ d s ,  (3.9) 

0 

where ( * )'(R) = d( * )/dR. We further define the following complex numbers : 

and 
iwp . 

Tu t  
A&(w) = 0. (3.10) 

Equation (3.8) may be written in the form 

eiut epurz[pcn iwPU,-Tu,(<,, + + - ~ + P Q ,  P' P  conjugate = 0, R2 

which implies that 

y j ) + x P ; * ) +  Y P%,-A&Jp,,, = 0. (3.11) 

Since Pu,(0) is finite, the solution Pu,(R) is given in terms of Bessel functions of the 
first kind J1(Bu,R), where B&.= /3rj, -A?,). 

If there were only one fluid in the cylinder, we would have the following solution: 

a Jl(i") eiwt + conjugate. V(R, 2, t )  = -~ 
2i J,(iAa) 

(3.12) 
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When there are two fluids, the solutions will attain the form (3.12) asymptotically 
a t  large 121. At small 121 the parts of the solutions which depend on Z become 
important, and in fact are crucial in satisfying the interfacial conditions (2.4) and 
(2.5). We find solutions in the form: 

+ a Jl(iA(l) R) 
Yl) = [- 2i Jl ( iA(l)a)  

W 

Z C, Jl( v,:) ePwnz] eiWt + conjugate for Z 3 0,  
12-1 

( 3 . 1 3 ~ )  
and 

+ a Jl(iA(2) R) v (') -[- - 2i J,(iA(,)a) D, J1 ( g, :) e42)nz] eiWt + conjugate for Z < 0,  
n-1 

(3.13b) 

where g, is the nth root of the equation Jl(a,) = 0, 

P(i)n = e+ A!,,)' with negative real part, ( 3 . 1 4 ~ )  

P(2)n  = ($+A&)y with positive real part. (3.14 b )  

The real roots g, are tabulated in Abramowitz & Stegun (1970). The coefficients C, 
and D ,  are chosen such that conditions (3.4) and (3.5) are fulfilled. 

Application of (3.13) to (3.4) yields 

VRE [0, a]. Using the orthogonality property of Bessel functions 

for q, such that J,(q,a) = 0 and Re (v) > - 1, we find that 

The condition (3.5) requires that 

(3.15) 

(3.16) 

(3.17) 

Multiplying both sides of the preceding equation by Jl(g, R/a) R, and integrating 
from 0 to a, we find that 

Computation of these definite integrals (see Tieu 1983) and elimination of C, from 
(3.16) leads us to the following expression: 

(3.18) 
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We have thus determined completely the expressions (3.13) for the first-order 
azimuthal velocity components Yj). The series in (3.13a, b )  converge. The convergence 
of these series can be shown by the following arguments. The left-hand side of (3.17) 
is the Fourier-Bessel series of the function 

which vanishes at R = 0 and a. Moreover the integral 

loaf@) R: dR 

is finite. It is known that the Fourier-Bessel expansion of a continuous function which 
has finite fluctuation in the interval [0, a] and vanishes a t  end points, converges 
uniformly to that function (Watson 1958). Extending this result to the complex 
function, then the series on the left-hand side of (3.17) must converge uniformly in 
the interval [0, a].  

We further observe that, as vn+ co, b(2)n/,!3(l)n+- 1 ,  which in turn implies, by 
(3.16), that D,-C,-+D,[l +7(2,/q(l,]. Since 11 + ~ ( ~ ) / q ( ~ ) l  > 1, uniform convergence 
of the series X$l(Dn -12,) J,(v, R / a )  in the interval [0, a] implies uniform 
convergence of C:-,,,D, Jl(v, R / a ) .  Likewise, since 11 + 7t2)/7(1J > l ~ ( ~ ) / q ( ~ ) l ,  the series 
Zz-lCn Jl(v, R/a) also converges uniformly in the interval [0, a] .  These results assure 
that the series in (3.13) converge uniformly. 

We have shown that the first-order azimuthal velocity components V&(R, 2, t )  
( j = 1,2) are expressible as follows : 

Yn(R, 2, t )  = v(~,(R,  2) eiWt + conjugate ( 3 . 1 9 ~ )  

(3.19b) = R[~:,(R; 2) eiWt + conjugate], 
where 

and 

(3.21) 

The polar representation of w&(R, 2) is 

w&(R, 2) = Iw&l (cos [A% ( w 3 1  +i  sin [Arg (4.))1)> 
where Iw&l and Arg (w&) are respectively the modulus and the argument of w&(R, 2). 
The azimuthal velocity components V,,(R, 2, t)  may be rewritten in the form 

Fj)(R,z, t) = 2R b&l cos(wt+Arg ( w & ) ) >  

= 2RJw&J sin (~t-r3(~)(R,Z)) ,  

( 3 . 2 2 ~ )  

(3.22 b)  

where S,,(R, 2) are the phase lags. The relation between the phase lags S(j,(R, 2) and 
the arguments of w&(R, 2) is 

S,)(R,Z) = +Arg(w;)(R> 2)). (3.23) 
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When 2(w&(R, 2)l is equal to 1 and the phase lag 6,) is zero, (3.22b) represents the 
velocity distribution in a solid body undergoing sinusoidal oscillation. 

3.2. Asymptotic expressions of the Jirst-order solution as w + 0 
When w+O we observe that 

7(j) = P(3’) +WL (3.24) 

where the viscosity p(3’) is defined by (2 .15~) .  Expression (3.10) in turn gives 

A?3’) = %+o(w) .  
k 5 )  

Using (3.14b,c), (3.24) and (3.25) in (3.16) and (3.18), we find that 

(3.25) 

( 3 . 2 6 ~ )  

(3.26 b)  

where the dimensionless group, Re(3’) = a2wpU)/pU) is the Reynolds number for each 
fluid. Furthermore, replacing the numerator and denominator by their Taylor series 
about zero in the following quotient gives: 

J,(iA,,R) - - J;(O) (iA(3’)R)+$J:(0) (iA(i,R)2+&J;11(0) (iA,,R)3+ ... 
Jl(iA(3’) a) 

Since Ji(0) = +, Jy(0)  = -i and J l (0)  = 0, the preceding expression can be reduced to 

J ; ( O )  (iA,) a )  + +J;’(O) (iA(,) a)2 + tJ;11(0) (iA,3’,a)3 + . . . ’ 

(3.27) 

Substituting (3.25) and (3.27) into (3.20), we finally get 

where k = ( -  l)j+l. 

order. 
The above expression (3.28) implies the following properties of the solution at  first 

(a )  When w + O ,  Re,) = 0 we have 

v (~ , (R ,  2) + +iR = 21w&(R, 2)l- 1 = 6,,,(R, 2) = 0, 

J&,(R, 2, t )  = R sin wt. 
and 

(3.29) 

The fluids inside the cylinder thus oscillate as a solid body with the cylinder. 
( b )  When w is small, the motion of a fluid inside the cylinder deviates from the 

oscillation of a solid body (3.29). The deviation is proportional to the Reynolds 
number Re(i) of the fluid. Two fluids inside an oscillating cylinder are distinguished 
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from one another, a t  first order, solely by their Reynolds numbers, or more specifically 
by the inverses of their kinematic viscosities 

1 -= & *  

"(i) &i) 

If the kinematic viscosities, and therefore the Reynolds numbers, of the two fluids 
are different, the azimuthal velocity components Tn(R, 2, t )  will have 2-dependent 
parts which satisfy the continuity requirements of velocity and shear stress across 
the interface. The 2-dependent part of the azimuthal velocity of a fluid is important 
only in the proximity of the interface, and is proportional to the ratio of the dynamic 
viscosity of the other fluid to the sum of the dynamic viscosities of the two fluids. 

4. The mean motion at second order 
4.1. Expressions for the inhomogeneous terms at second order 

Having obtained the solution a t  first order, we now derive the expressions for 
S 2 R Z [ u ( j ) 1 1 ~  S 2 Z Z [ u ( j ) r l  and 

s(j) V * S 2 [ u ( j ) J - ~ ( j )  u(j)l*Vu(j)Ij (4.1) 

which appear in the second-order problem (2.26)-(2.29). Since 

UQ) (3) = U(i)l = Fj)(X,  t )  e,, 

where V,,, (X, t )  aregiven by (2.13a, b) ,  the history;yt[;) (X, t - s )  isdetermined by (2.17) 
with n = 1: 

x:(;3 (X, t -  s )  = y j ) ( X ,  7') e, dT' s,"- 
= e, jtt-" [Rw& eiwT'+ conjugate] dT' 

= e,RrLoiWt(e-iW*-l)+conjugate iw 1 . 
We define 

(4.2) 

SZ,i,(R, 2, t - s )  = *(R, 2, t - s )  = [w&(R, 2) eiw(t-s) + conjugate], (4.3a,b) 

((e))ci) = r&eiut(e-ius- 10 l)+conjugate 1 
and 

V 

then 

and 
A 1[ u&I = RQn,,, R(eR e, + eo eR) + RQ,, z(ez e, + e,  ez)  (4.4b) 

where the comma subscript denotes partial differentiation with respect to the 
variables that follow. 

xi8 = e,R((e))(j)  (4.4a) 

Using (4.4a,b) in (2.19b), we find the following expressions: 

SzRZ[ U(j)ll eR'S2[  u(j)ll* eZ 



and 

The forcing function Se,,, defined by (4.1) is therefore completely determined by 
(2.19b) and (4.6). If we now put (4.2) and (4.3b) into (4.6), expand products of sums 
into sum of products, carry out the integrations with respect to s and finally group 
terms, we will get results in terms of o&(R,z) and related material functions. The 
work involved is tedious, and will not be shown here. 

To present the above results in manageable forms we introduce the following 
functions : 

FIGURE 13. Development of F .  Heated grids: X ,  Wiskind; *, Alexopoulos & Keffer; Y, 
Venkatararnani & Chevray; + , present investigation. Heated screens: symbols as in figure 9. 
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where I ( * ) [  and denote respectively the modulus and complex conjugate of ( - ) .  
Material-related functions, arising from our analysis a t  second order, are listed below : 

r m  r m  

C , ( w )  = $-27,,  q w )  = 4*-27*. 

These functions are not material functions, because they depend also on external 
factors that induce the motion. I n  this problem such a factor is the angular velocity 
w .  When w+O the limits of the above functions are 

y,(O) = r * ( O )  = -a1, $ ( O )  = ,jj*(O) = a2, C,(O) = CT(0) = a2+2 "1, (4.9) 

where a, and a2 are defined in (2.15b, c ) .  We remark that since j4(s1, s2) = 1/(s2, s,), 

r m  r m  

J, J -y(s1,s2) sinw(s,-s,)ds,ds, .= 0. 
0 

The forcing function S,j, can then be expressed in terms of the functions defined 
in (4.7) and (4.8) as follows: 

%(R, Z , t )  = ( - r ,  y,+$?-3+pr, )  e,+C, y4 e, 

+{eZiwt[( -q*s1+#*s3+ps5) eR+C:s, e,]. +conjugate}. (4.10) 

Similarly, we find that 

SZRZ[Ul]  = R2(~,*z*Z~R++,*~w,*R)Cl+{e2iwtR2w* , , w ,*R C: + conjugate} (4.1 1 a )  

(4.11 b )  
and 

S2,,[ U,] = 2R21w?,Iz C, +{e2iwt R 2 ( ~ : z ) 2  C: + conjugate}. 

Expressions (4.10), and (4.11) are of the form 

f ( R >  Z , t )  = m> 2) + f ( R  Z , t ) >  

where f (R,  2, t )  is a time-periodic function about zero mean level with period n / w  : 

f ( R , Z , t )  = f ( R , Z , t + E )  for all timet. 

( 4 . 1 2 ~ )  

The time-independent parts of S ( B ,  2, t ) ,  SZRz[ U,] and S,zz[ U,] are 

and 

The time-periodic parts @(R,  2, t ) ,  S2RZ(R,  Z, t )  and Szzz (R ,  Z, t )  are the terms in curly 
brackets of (4.10) and (4.11 a,b) respectively. 
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Since the inhomogeneous terms 93(j,(R, 2, t ) ,  Sfj)2Rz[ U,] and S(j)2zz[ UJ,  of the 
second-order problem defined by (2.26)-(2.29), are periodic, the solution U(!,2, @(j)2 

and h, can be decomposed into a mean part and periodic part of the same period K / W .  

u(,,~ = +C(,, ++[eziwt 0(5) +conjugate], 

@(j)2 = $F(j) +i[eziwt 6(,, +conjugate], 

h, = $+:[eziWt~+conjugate]. 

(4.14) i - 

We can view the (‘) as mean values of second derivatives with respect to E of the 
original function ( ) . 

4.2. The problem for the mean motion 

The governing equations for the mean motion at second order can be derived by 
substituting (4.10), (4.11) and (4.14) in (2.26) and collecting terms which are time- 
independent. In  this way we find 

VS,,, -,uUu, V2F(i ,  = 2 9 ( , , ( R , Z ) ,  ( 4 . 1 5 ~ )  

V. 3(n = o in yu) ; (4.15b) 

D,,,(a,Z) = 0, U(i , (O,Z)  is bounded; (4.15c, d )  
- - 

And satisfies 

(4.15e) 

a t  z = 0 and for R E  [0, a], such that 

or 

where [“ RKdR = 0. 
J o  

(4 .15h ,k )  

(4.16) 

( 4 . 1 7 ~ )  

(4.17b) 

(4.18) 
- 

The mean motion U =  EeR+Ze, and reduced pressure will be obtained by 
solving problem (4.15). To this end we define a stream function $(R, 2) such that 

The radial and axial components of (4.19) are 

- - i a  - - i a  
W(,) = ---$ RaZ (5)’ u ( j )  = zz$(j)’ 

Taking the curl of both sides of (4.15a), we get 
- - 

-pLU) v x [VZ U(,)] = 2 v  x 9,). 

(4.19) 

(4.20a, b )  
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We then invoke the vector identity 

V 2 a = V ( V . a ) - V x ( V x a ) ,  

v x D = - - -Y$e@, 
1 
R 

and note that - 

where 

27 

It can be shown that $ satisfies the equation 

(4.21) 

(4.22) 

Equation (4.22) applies to both fluids. Moreover, the $*, must also satisfy 

( 4 . 2 3 ~ )  

4 and 2 $ remain finite as R-t 0;  (4.23b) 
R R 

boundary conditions 
$(a, 2) = $,R@, 2) = 0, 

( 4 . 2 3 ~ )  

(4.23d3, e )  

(4.23fl 

(Boundary condition (4.23e) was &rived using (4.15c,g).) When the $(,) are known, 
we may integrate ( 4 . 1 5 ~ )  to find 3(,). Finslly, we can compute the inhomogeneous 
terms of (4.16) and solve (4.16)-(4.18) for z. 

5. The solution for the problem of the mean motion 
5.1. The stream function 

The stream function $(,)(R, Z ) ,  defined by (4.19), may be decomposed into two parts 

$(j)(R, 2) = $ P ( j ) ( R >  2) +$E(,)(R, 2) (5.1) 

where $'p(,) is a particular solution of the following problem: 

S2$(j) = f ( j ) ( R , Z )  in qj), ( 5 . 2 ~ )  

subject to boundary conditions 

(5.2 b, c )  

(5.2d, e )  

a 
$(j)(% 2) = &(,'(a, 2) = 0, 

i a  
% ( R , Z )  and ii57Z$,,,(R,Z) are finite as R+O, 

and 
$( , )+O as IZI-+oo. 

The forcing function on the right-hand side of ( 5 . 2 ~ )  is defined below : 

2 FLM 145 
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On the other hand, @H(i) satisfies the edge problem defined by (5.2a-f) with f(i) = 0, 
and interface conditions at  z = 0 : 

b@H, Z Z i  = -b~P, .Z4+2RIS,R, [Ul l i ,  (5.4a) 

wH, zn = - wP, z ~ J  and @H(j) = - @rp(j). (5 .4b,c)  

5.1.1. Expressions for particular solutions 

derive explicit expressions forf(i,(R, 2). We note that since W(~)(R, 2) satisfy 
The form of @p(j) depends on the form of the forcing function f(n(R, 2). We now 

a 2  1 a v a2v -v+--v--+--- = A2v. 
aR2 RaR R2 3Z2 

the function w&(R, 2) = v(~)(R,  Z)/R must satisfy 

(5.5a) 

3w* 
A + w : ~ ~ + ~ : ~ ~  = A%*. (5.5b) 

R 

Equation (5 .5b)  allows us to express high-order derivatives of w* in terms of 
lower-order derivatives. Substituting appropriate expressions from (4.7) into (5 .3)  
and using (5.5b) to eliminate high-order derivatives of w * ,  we get 

where 
zz = i-q1. 

We then evaluate (5 .6) ,  using the first-order solution, and find that 

The expression forf,,,(R, Z )  can be obtained by replacing subscript (1)  and coefficients 
C by subscript (2) and coefficients D in (5 .8) .  The right-hand side of (5.8) consists 
of a single sum on subscript 1 and a double sum on subscripts m and n. We denote 
the truncated form off,,,(R,Z) asfikVMvN) when the limits of these summations on 
subscripts 1, m and n are L,  M and N respectively. 

Expressions of the type (5 .8)  are computable. Nevertheless they are not in the most 
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manageable form, especially for the lengthy calculations to follow. We next derive 
approximate expressions for f ( , ) (R ,  2) valid in the range of parameter of interest. To 
this end, we first recall that 

and 

For sufficiently small w it  is possible to approximate the &n by 

so that 

( 5 . 9 ~ )  

(5.9b) 

(5.10) 

Using approximations (5.9) and (5.10) in expressions of the type (5 .Q we get 

(5.11) 

where the coefficients v ~ ) ~ ~  and i,,, knm, with k = 1,2,3,  are defined below. 
F o r j  = 1 :  

(5.12) 

2-2 



30 H .  A .  Tieu, D .  D.  Joseph and G. 8. Beavera 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

3.831 71 
7.01 5 59 

10.17347 
13.323 69 
16.470 63 
19.615 86 
22.76008 
25.90367 
29.04683 
32.189 68 

i n-1 

(not needed) 
7.663 42 

10.84730 
14.01385 
17.172 23 
20.326 04 
23.47698 
26.62601 
29.77367 
32.92034 

TABLE 1. The first ten exponential coefficients in (5.17) 

Forj = 2 the coefficients u(z).kl and i ( z ) tnm are defined similarly as in (5.12), with all 
the right-hand sides multiplied by - 1, and subscript (1) and coefficients C replaced 
by subscript (2) and coefficients D respectively. 

Expressions (5.11) can be further simplified because of the following property of 
un. Large zeroes u, of Jl(un) = 0 are given asymptotically (Abramowitz & Stegun 
1970) as 

u, = (?&+a)., (5.13) 

which implies that for large n 
un-un-l = It, (5.14) 

and that given a positive increasing sequence m, n, r ,  s such that m+s = n+r then 

um + us = un + ur. (5.15) 

The asymptotic property (5.15) gives rise to a further approximation of the double 
summation in (5.11). We define 

1 n-1 
Y 

u, = - C (uk+un-,) (n 2 2).  (5.16) 
n-1 k-1 

The first ten values of un and nine values of c?n are displayed in table 1. 
It now follows that (5.11) may be approximated by: 

( 5 . 1 7 ~ )  
where 

m-1 

(5.17~) 
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and 

f U ) k Z ( R ) E  jIiU)lkl J1(gk:) J 1 ( a Z ~ ) + i ( j ) 2 k l R J l ( g k : )  Jz(aZ:) 

+ i ( j )3kz  J2 ( ak :) J,  ( at !) + conjugate . (5.17 d )  

The second single summation in (5.17 a) is the approximation of the double summation 
in (5.11). The motivation for this approximation is the property (5.15), the application 
of which is to replace all exp [ - (at + a,) Z/a] of every k, I such that k + 1 = m, by 
e-@mZla, where the exponents-5, are defined in (5.16). We then group all the 
functions f U , k , ( R )  which are to be multiplied by e-@mZla, to form new functions 
Yu)m(R) as defined by (5.17b-d). This type of reduction not only renders the 
presentations of the fy) (R, 2) simple, but also reduces the computational time and 
storage requirements in computations that involve these functions. 

Using ( 5 . 1 7 ~ )  in (5.2a), we find that $ p ( j ) ,  which is a particular solution of (5.2~-f) 
(see Tieu 1983), is given by 

1 

where 

(5.19b) 

(5 .19~)  

joa E J ~ (  g n  :) q j ) n ( ~ )  dt 
QU)n 9 (5.19d) 

Joa t~1( g n i y  d~ 

and dm(R, E ) ,  %,),(f), p(j)m(E), &U)m, with m 2 2, are defined exactly as their coun- 
terparts (5.19 a-d) , with c?,, fuf;,m( R) replacing an, ftnn( R) respectively. 

5.1.2. Determination of the homogeneous solutions 
The homogeneous parts $Hu)  can be expressed by biorthogonal series (Yo0 & 

(5.20) I a2 
Joseph 1978) : m 

$ H ( l ) ( R ,  2) = I: A,  e-pnZla--- $1 (n) (R) ,  
-m Pz, 

-m Pi 
a2 

Bn ePnZla- $1 (n )  (R) ,  
00 

$E(z)(R, 2) = 

where Re bn} 2 0. The eigenfunction q5p) (R)  must satisfy the differential equation 

(5.21) 
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The general form of @) is therefore given by 
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The coefficients of eg, E = 1, . . . ,4,  are determined by the boundary conditions (5.2b, c )  
at R = a and R = 0. The boundary conditions at R = 0 require that 

lim (T) and lim (7) $ink remain finite. 

e2 = e, = 0. 

( 5 . 2 3 ~ )  

(5.23b) 

R 4  R 4  
Hence 

The sidewall boundary conditions (5.2b,c) are fulfilled if 

qp (a )  = qq;k(a) = 0. (5.24) 

Using (5.22) and (5.23b) in (5.24), we get 

el a JI@n)  + e3a2Jo@,) = 0, 

elpnJobn)+e3[2u J O @ n ) - ~ n a J l b n ) I  = 0. (5.25) 

The determinant of (5.25) must therefore vanish : 

Pnq@n)-2Jl@n) Jo@n)+PnJ;4@,) = 0. (5.26) 

Each root p ,  of (5.26) is an eigenvalue, corresponding to the eigenfunction 

(5.27) 

The expression (5.27) may be derived from (5.22) using (5.233), and ( 5 . 2 5 ~ )  to 
eliminate e,. We have absorbed the unknown constant el into the A, and B,. 

Eigenfunctions of the form (5.22) have been used in the study of Stokes' flow 
between concentric cylinders (Yo0 1977). In the limiting case in which the inner 
cylinder shrinks to zero, the equation (5.26) and eigenfunctions (5.27) are recovered. 
The eigenfunctions $?) have also been used in the study of ' die swell ' of Newtonian 
fluids (Trogdon & Joseph 1980). 

The eigenvalues p,, satisfying (5.26), are symmetrically located in a complex plane, 
and numbered in increasing order of magnitude. The p n  used in (5.20) are the roots 
that lie in the right-half complex plane. Let p ,  be the roots of (5.26) that lie in the 
first quadrant of the complex plane, and define 

(5.28) 
- - P-n = Pn. 

Since the edge data (5.4a-c) at 2 = 0 are real, we have 
- - 

A_,  = A,, B-, = B,. (5.29) 

A biorthogonal property for the eigenfunction can be derived as follows. We define 
We note that the zero eigenvalue po is not in the spectrum. 

(5.30) 

and 

(5.31) 
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Using the definitions (5 .30)  and (5 .31 ) ,  (5 .21)  can be rewritten as 

where 

A = [ : )  1'1. 
The problem adjoint to (5 .32) ,  ( 5 . 2 3 ~ )  and (5 .24)  is defined by 

V Y R )  = [$j"'(R), $P)(R)Ij 1 

33 

(5.32)  

(5 .33)  

and associated boundary conditions 

(5.34) 
d 

@pf(a) = ---$?)(a) dR = 0, 

l d  
and lim - - $P) are finite. $in' lim - 

R+O R+O RdR 
(5 .35)  

The functions $p) and q5p) satisfy the same differential equation (5 .21)  and boundary 
conditions (5.23a) and (5 .24) ,  hence we may take 

$P' = qp. (5.36) 

Using (5 .32) ,  (5 .33)  and associated boundary conditions, i t  is possible to show that 

where Smn is a Kronecker delta: 

Computations (see Tieu 1983) yield 

We also introduce the product 

(5 .38)  

(5.39 a )  

and find that 

(5.39 c )  
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The coefficients A, and B, in (5.20) can be next determined as follows. Substituting 
(5.20) into boundary conditions (5.4a-c), we get 

m 

x (p(z)Bn-p(1)An)$?) = - au$,,,,(~,o)n + 2 ~  “Is2Rz[ulin, (5.40) 
-03 

(5.41) 

and 
a2 

X B n z $ ? ) =  - h(2) (R,  O) ,  

x (B ,+A,)$$~)  = -  ($P(l)(R, 0) + $P(2)(R, 0)). 

(5.43) 
-m 

where $p(j) and $ 2 R z [ u ( j ) l ]  are given by (5.18) and (4.13b) respectively. Addition of 
(5.42) and (5.43) yields 

m 

(5.44) 
-m Pn 

Multiplying (4.42) by - , L L ( ~ ) ,  and (4.43) by ,u(~), then adding the resulting equations 
together we get 

(5.45) 

We define the following differential operator: 

Combining (5.40) with (5.47), and (5.41) with (5.46), one gets 
m 

E (p(z )Bn-p(1)An)4(n)  = Y, 
-m 

and 

(5.48a) 

where : 

and 

(5.49 a )  

(5.49b) 

Expressions for the components yl, y2, and are listed in the Appendix. 
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If we put 
P(z)Bn-P(i)An = an, Bn+An = bn, (5.50) 

then the inverse of (5.50) is given by 

Equations (5.48a, b )  can be rewritten as 

and 

Premultiplying (5.52a,b) by R-lw(l)*A and integrating from 0 to a ,  we get 

' - l o  R 
a k - a ~ y ( E ) * A * y d R ,  

--a, 

Equation ( 5 . 5 3 ~ )  in turn yields 

(5.51) 

( 5 . 5 2 ~ )  

(5.52b) 

(5.53 a )  

(5.53 b )  

(5.54) 

and (5.533) leads us to an infinite system of linear algebraic equations in bn. We solve 
the system by truncation (Kantorovich & Krylov 1958). Once a, and b ,  are known, 
the coefficients A ,  and Bn are determined by (5.51). 

We finally note that, since the solution $p(j), given by (5.18), and $p(j),R vanish 
at  R = 0 and R = a ,  the first components in (5.49a,b) satisfy 

q =  q , R = O  at R = O  and R = a ,  

y1 = Y ~ , ~  = 0 at  R = 0, 

y1 = 0 and yl,R = Za3[rJo, RI2, C,] at R = a. 

It then follows from earlier work of Joseph (1977) that the expansion series in terms 
of #(n) for P in  the right-hand side of (5.533) converges uniformly and absolutely for 
R E [0, a] .  And the expansion series for y in ( 5 . 5 3 ~ )  converges absolutely. 

The stream functions $.o.,(R, 2) have thus been derived in the form 

where 

(5.55 a)  

(5.55b) 
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The foregoing expression for qFu)(R, 2) is based on approximations of the type (5.9).  
The problem can be solved without these approximations but the formulas are much 
bigger. 

5.2. The mean pressure 

The mean components of the vector equation ( 4 . 1 5 ~ )  are 
- 

(5.56 a)  
a 5  
az e, : --pV2Z = 2C1 r4,  
- - 

a@ ( 2= 1') eR:  -- p V w-- = 2(-qlrl+.h(r3+pr5).  aR 
(5.563) 

For an arbitrary function f(R, Z), we define the following decomposition 

f(R, Z) = W f ( R ,  z))+ z)), 
where [EX (f(R, 2)) = part off(R, 2) that depends on 2, so that 

ajpz = (a/az) [EX U(R, z)); 
and N[Ex(f(R, 2)) = part off(R, 2) that is independent of 2, so that 

[Wf(R ,  Z))l = 0. 

In this problem, Z-dependent parts Ex ( ) decay exponentially. with 2. Examining 
the expressions for rl, r3,  r4 and r5 in (4 .7) ,  we observe the following: 

pV20+ 2C1 r4 = Ex (pV2u', + 2Z1 r4), ( 5 . 5 7 ~ )  

Let 

and 

then - 

scn(R,  2) = z { $ ( R )  + z$](n, 2). 

Using (5.58) and (5.57) in (5.56), we get 

( 5 . 5 8 ~ )  

(5.583) 

( 5 . 5 8 ~ )  

Z 
z(')(R, 2) = Ex [ s (,uV2U+ 2C1 r4) dZ] ( 5 . 5 9 ~ )  

S(~)(R,Z) = ~ N E X  ( - q r , r l + $ r 3 + p r 5 ) u  +constant p .  (5.593) 1 
and 

Integrating r4 with respect to 2, we find that 
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where the second equality has been derived using (5.56). It then follows that 

Substitution of first-order results into the preceding equation yields : 

) - iA,,, J1(i&) R) Jl( u, f)] + conjugate 

The right-hand side of (5.60) can be simplified by approximations of the type (5.9) 
and (5.10). We denote 

- iA,,, Jl(iA(l) R) J1 (un E)] a + conjugate), (5.61 a) 

and 

(5.61 c) 

Y ( ~ ) ~ ,  Y ( ~ ) ~ ~ ,  are defined exactly as in (5.16) with subscript (1) and coefficients 
C replaced by subscript (2) and coefficients D .  The approximated version of (5.60) 
is of the form 

(5.63) 
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Substituting (5.55) into the right-hand side of (5.63), and carrying out necessary 
differentiations and integrations, we get 

where 

J1@n) ) J1 (pn :) , #g"(R) = 2 2 J 0  pn- - 1-2 (5 .65~)  
.Jo@n) @ ) ( 3 ( pnJo(pn) R 

a 
(5.653) 

and Pn(R) ,  @ , ( R , f ) ,  with m 2 2, are defined similarly as in (5.653,~) with 6, 
replacing un. We also recall that Gn(R, f ) ,  Hcl,n(f) ,  &(,)n and their counterparts with 
symbol (:) are defined in ( 5 . 1 9 ~ 4 ) .  

We then substitute (5.62) and (5.64) into ( 5 . 5 9 ~ )  to obtain an explicit expression 
for (R,  2) : 

We next derive the Z-independent part f { i ]  ( R )  using (4.7) in (5.593), and find that 
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The mean pressure Su) (R ,  2) is therefore determined, modulo an arbitrary constant 
bu), by (5.58c), (5.66) and (5.67). 

5.3. The mean interfacial shape 
In this subsection we address the lowest-order deviation of the interface from the 
horizontally flat position for three special cases. In the first two cases, the interfacial 
surface tension is comparable to other forces, and the edge of the interface complies 
with the boundary conditions of the type (i) or (ii) in (4.17). In the third case, the 
interfacial tension parameter is practically zero, so that the normal stress difference 
between the two fluids vanishes. 

We resume the analysis with the second-order differential equation (4.16) : 

The above equation is not completely determined, because of the unknown constant 
pressure difference I[#] = bf2)-&). However, the equation for the slope, 

d =  
X -h(R) ,  

dR 
(5.68) 

is completely defined : 

We recall (4.19b) and ( 4 . 1 3 ~ )  and find that 

Moreover, (5.563) yields 

(5.71) 

We now evaluate ( ~ - 2 ~ ~ ~ / a Z - 2 ~ 2 z z [ ~ l ] ) ~ l ,  using (5.70) and (5.71), and then 
reduce the resulting expression, using (5.5b),  to find that 

We can write similar expressions for fluid 2. Moreover, since the following conditions 
hold at  Z = 0: w,zn = wn = K + ~ I I  = 0, (5.73) 

- 
the expression for (8 - 2,u aE//aZ- 2szZz[  U1]){2) at Z = 0 is conveniently expressed 
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partly in terms of functions defined for fluid 1. It then follows that 
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Expression (5.74) is of the form 

where W,(R) is the only part of W(R) that arises when the 2-dependent contributions 
from the velocities at first and second orders are suppressed. The 2-dependent 
contributions are represented by W,(R), which can be further decomposed into : 

%(R) = Wll(R) +%(R), (5.75 b)  

(5.76) 

Using (3.20), (3.21), (5.55) and (5.76) in (5.74), and after lengthy manipulations and 
reductions of terms, we get 
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(5.78) 

and 

(5.79) 

So the forcing function W ( R )  = [ [ - ~ + 2 ~ a ~ / ~ Z + 2 ~ , , , [ U l ] ~ '  in (5.69) is considered 
known, computable from (5.75) and (5.77)-(5.79). 

We next examine the case where the surface tension is not small and the interface 
satisfies the boundary conditions of the type (i) or (ii) in (4.17). 

5.3.1. Large interfacial tension 
Equation (5.69) can be rewritten as 

(5.80) 

We may non-dimensionalize (5.80) by multiplying the variable and functions 
[R, X ( R ) ,  h=(R), W ( R ) ]  with the scales [l/a, w 2 ,  w2/a,  w 2 a 2 / ~ ] ,  and define the 
dimensionless parameter 

The dimensionless form of (5.80) is given by 

d2 
---X+--X- ,+A2 X = W ( R )  with RE[O, 11, 
dR2 kd"R ($ ) 

(5.81) 

(5.82) 

and the boundary conditions corresponding to (i) and (ii) in (4.17) are given by ( 5 . 8 3 ~ )  
and (5.83b) respectively: 

X ( 0 )  = 0, X(1) = w22, ( 5 . 8 3 ~ )  

X ( 0 )  = 0, h(1) = 0. (5.83 b)  
- 

The constraint of constant volumes (4.18) becomes 

6 RZ(R) dR = 0, ( 5 . 8 4 ~ )  
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or in terms of the slope X(R) : 
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iZ(0) +I’ [ J R  X ( g )  dg] R dR = 0. 
0 0  

(5.84 b ) 

The differential equation (5.82) subject to boundary conditions ( 5 . 8 3 ~  or b )  and 
constraint (5.84) can be solved by the method of variation of parameters. In fact, 
the general form of a solution of (5.82), which satisfies X ( 0 )  = 0, is given by (see Tieu 
1983) 

X(R) = -J1H,(R,5)4E(5)5d5+b11(AR), 0 (5.85) 

where the constant b is chosen to satisfy the edge condition at R = 1, and the kernel 
H,(R, 6) is defined as follows : 

(5.86) 

Il(R) and Kl(R) are modified Bessel functions of the first and second kind respectively. 
The corresponding interfacial shape correction %( R) is therefore 

(5.87) 

where the unknown constants R(0) and b are to be determined from boundary 
condition at  R = 1 ,  and constraint (5.84). 

If the contact angle is prescribed, i.e. when gonditions (5 .83~)  hold, b is found to 

(5.88) 
be 

1 
b = - [ w 2 8 +  &(A)  J’ EIl(A5) W ( g )  dg] . 

I,@) 0 

Substitution of (5.87) in (5.843) yields 

If the contact line is fixed at  R = 1,  i.e. when boundary conditions (5.83b) hold, 
integration by parts of (5 .84~)  leads to 

f l  

J, R2X(R) dR = 0. 

Substitution of (5.85) in (5.90) yields 

Jo1R2J01H,(R,t)I(S) SdtdR 
b =  

Jol R211(AR) dR 

We may determine x(0) by using the condition z( 1) = 0, and find that 

(5.90) 

(5.91) 

(5.92) 

5.3.2. Zero interfacial tension 
The expressions for interfacial shapes derived in the preceding cases are applicable 

when A2 is about 0(1) or o(1). In the case A2 %- 1, the problem defined by (5.82) and 
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boundary conditions of the type (5.83) should be solved by singular perturbations. 
In the limit r~ = 0 (5.80) is no longer well defined and should be replaced by 

bn gx = -w(R). (5.93) 

Again we may non-dimensionalize the variable and functions [R, X(R), Z(R), W(R)] 
by multiplications with the scales [ l / a ,  w 2 ,  w 2 / a ,  w 2 / b ]  g ] .  The dimensionless form of 
(5.93) is thus 

X(R) = -W(R). (5.94) 

It then follows that 
R 

0 
Z(R) = -1 W([)d(+Z(O), (5.95a) 

where E(0) is chosen such that the condition of constant volume is satisfied : 

- 
Z(0) = - ; Jol R JoR dtS dR. (5.95b) 

The solution we constructed is such that Se(0) = 0 ; therefore the condition X ( 0 )  = 0 
is automatically satisfied. However, the edge condition at  R = 1 cannot be fulfilled. 
This is expected, because in the absence of interfacial tension the boundary between 
two media is determined entirely by the balance of normal stress. When interfacial 
tension is zero, the interface cannot sustain tension forces, and it is impossible to apply 
boundary conditions that are independent of motions of the two media. 

We now determine the order of magnitude of the dimensionless L(R;w) when w 
approaches zero. The dependence of (5.11) and (5.49) on o is found, using (3.26) 
and (3.27), to be 

f & W ; w )  = O ( w 2 ) ,  ( 5 . 9 6 ~ )  
and 

(5.96 b ,  c )  

(5.97) 

The order estimates in (3.26), (3.27) and (5.97) then lead to the orders of magnitude 
of the dimensional forcing function W(R) and its components, as defined in 
(5.75)-( 5.79), as follows : 

W o ( R ; w )  = -b] R + O ( d ) ,  WI1(R;w) = O ( d ) ,  W,,(R;w) = 0 ( w 2 ) ;  

and therefore 
W ( R ; w )  = - b ] R + O ( w 2 ) .  (5.98) 

Of particular interest is the case of zero interfacial tension. Application of (5.98) 
in (5.95) yields a simple decomposition of the dimensionless mean interfacial-shape 
correction : 

1 ( 5 . 9 9 ~ )  

(5.99 b )  
for R E  [0,1], where. 

h*(R, w )  = O ( w 2 ) .  
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FIGURE 2. Overall view of the experimental equipment. 

The first term in the square bracket of ( 5 . 9 9 ~ )  represents a parabolic shape which 
is the exact interfacial shape when the two fluids execute the same solid-body motion 
as the cylinder. The term h*(R;w) represents the deviation of the interface shape 
from a parabolic profile, when the fluids do not undergo a solid-body rotation. 

6. Experiments 
6.1. Apparatus 

The central part of the apparatus consists of a vertical Plexiglas cylinder with an 
inner radius of 5.68 em and a height of 42.00 cm. The cylinder is located inside a fixed 
Plexiglas housing of 18.0 em x 23.0 em rectangular section and of approximately the 
same height as the cylinder, as shown in figure 2. The oscillatory motion is 
transmitted to the cylinder by means of a driving mechanism consisting of a motor, 
a reduction gear, a Scotch yoke and a rack-and-pinion system. 

The cylinder is supported at its upper end by a ring bearing which is attached to 
tt rigid aluminium support frame. The frame in turn is attached to a rigid aluminium 
table upon which the apparatus is situated. The bottom end of the cylinder is sealed 
by means of an aluminium endplate. This component has a central stud which passes 
through a ball bearing located in the support table. The stud carries a pinion gear 
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FIGURE 3. Calibration of'the system for optical distortion. A scale with equally spaced marks is 
immersed in STP within the circular cylinder. The picture is taken through glycerol occupying the 
space between the circular cylinder and EL surrounding rectangular box. The divisions on the scale 
remain uniform in this view across the whole diameter of the cylinder. 

which meshes with and is driven by a rack attached to the Scotch-yoke mechanism 
described later. 

The outer Plexiglas housing is fixed to the support frame, and has a liquid-proof 
seal in the bottom, through which the cylinder driving stud passes. The space between 
the housing and the cylinder is filled with glycerol, whose refractive index is extremely 
close to the refractive indices of STP and TLA227 so that there is no measurable 
distortion of light paths going through the cylinder to an outside observer. This is 
illustrated in figure 3 which shows a photograph of a calibration scale, with equally 
spaced marks, immersed in the STP. The distances between graduations on the 
photograph were checked by means of a travelling microscope, and found to be 
uniform. 

The driving mechanism is powered by an Electro-Craft servo motor, type 
0703-05-052. The motor is connected to a gear box of reduction ratio 9.5. The output 
shaft of the gear box is connected to a steel disk of a Scotch-yoke mechanism which 
transforms steady input rotations to  a harmonic rectilinear motion of the yoke. There 
are 13 threaded holes on the disk, and corresponding unthreaded holes are located 
diametrically symmetric to the threaded holes to balance the disk dynamically. The 
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yoke is constrained to move horizontally by pairs of roller bearings and has a rack 
attached along part of its length. The rack meshes with the pinion on the cylinder 
bottom plate, thus providing the sinusoidal oscillations of the cylinder. The speed 
of the motor is regulated by an Electro-Craft feedback controller, type E.710. This 
maintains a constant speed from the motor under varying torque conditions, which 
in turn assures true sinusoidal motion of the cylinder. 

The angular frequency of the cylinder is directly related to the gear ratio and the 
motor shaft angular velocity, which is monitored by means of a Kaman proximity 
gauge, is displayed on an electronic counter. To monitor the instantaneous motion 
of the cylinder, evenly spaced marks are scribed on the outside surface of the cylinder. 
The amplitude of the cylinder motion can be adjusted by changing the position of 
the crank pin on the steel disk. 

6,2. The test JEuids 

The test fluids used in the current experiments are lubricating-oil additives TLA227 
and STP. The former is a solution of methacrylate copolymer in petroleum oil, and 
the latter is a solution of polyisobutylene in oil. Both fluids have been used extensively 
in the studies of steady and unsteady rod climbing problems (Joseph et al. 1973; 
Joseph & Beavers 1976). The present samples come from different production batches 
from the fluid samples used in earlier experiments. Thus it was necessary to measure 
the material constants of these fluids as a prelude to the oscillating-cylinder 
experiments. 

The densities of the fluids were measured using standard specific-gravity bottles. 
These measurements were repeated several times, using bottles of different volumes. 
An average density for each fluid was then computed from these measurements. 

The variations of shear stress and first normal stress difference with shear rate were 
measured in cone-and-plate and parallel-plate geometries using a Rheometrics 
mechanical spectrometer. For a small range of shear rates near zero, the shear stress 
varies linearly with shear rate and therefore the zero-shear viscosity of each fluid can 
be determined with good accuracy. However, a limitation of mechanical viscometers 
is that readings of the first normal-stress difference at very small shear rates are not 
very reliable. These readings are thus subject to possible error from the extrapolation 
procedure described below. 

It is always the case that some backward extrapolation is necessary to determine 
the first normal stress difference at  infinitesimal shear rate y .  Theoretically, this 
normal stress difference is proportional to the square of the shear rate y2,  for very 
small Y, where the proportionality constant is --a,. The material constant 0 1 ~  can 
thus be deduced from a graph of the first normal stress difference versus shear rate. 
From the rod-climbing experiments, the climbing constant ,8 = 301, + 201, is evaluated 
(see Beavers & Joseph 1975), and therefore the constant u2 can be determined next. 

Another physical property required in this work is the interfacial tension between 
STP and TLA227, which at room temperature is very small. The interfacial tension 
is very difficult to measure accurately for this pair of polymer solutions. Using a 
standard electrobalance ring tensiometer, it was consistently found that the 
interfacial tension u was less than 0.4 dyn/cm and was probably about 0.1 dyn/cm. 
Thus for present work it is a reasonable approximation to take the interfacial tension 
cr to be zero. This approximation is equivalent to assuming that the Bond number 
is infinitely large. 

The next material functions to be determined are the linear and quadratic shear 
relaxation functions G(s) and y(sl,s,) that appear in (2.19). The most widely used 
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forms of these functions are the generalized Maxwell models (Joseph & Beavers 1976; 
Bird, Armstrong and Hassager 1977) : 

and 

where 
N N M 

1 1 1 
Xu, = Z  b ,  = C ,  = 1. 

In the works of Joseph & Beavers (1976), and Kolpin et al. (1980), the second order 
theoretical predictions for unsteady rod climbing have been found best fitted to 
experimental observations on TLA227 for the following choice of parameter values : 

k,2 = 15.43 when N =  M =  1 and 0 G o 2  < 30. 
And 

k: = 14.50, ki = 307.00, C, = 0.9735 
when 

N = 1, M = 2 and 0 Q w2 < 450. 

If the Maxwell models (6.1)-(6.3) are good, then the findings in the oscillatory 
rod-climbing investigation should be applicable in some sense to other flow situations. 
It might be expected that in general, for TLA227, the above constants a,, b,, c, and 
k ,  remain the same, but that the range of best fit on o2 varies from one type of flow 
to another. We do not claim, however, that these fitting constants should have the 
same values for STP. Still, if these constants for STP are temporarily unknown, a 
good first approximation is to use the same values as for TLA227, particularly in view 
of the experimental observation that the parameter values for Paratone (another oil- 
based polymer similar to STP and TLA227) are almost the same as for TLA227 
(Kolpin et al. (1980). We note that the asymptotic values of the only material-related 
functions (i.e. f (o)  and q , ( w ) )  occurring in the mean problem at second order are 
independent of these fitting constants as w approaches zero. So, if we choose an 
arbitrary set of values for a,, b,, c ,  and k ,  consistent with (6.3), but not close to the 
true values of these coefficients, then we will find that, for sufficiently small angular 
frequency w ,  the theoretical interfacial shape would look similar to the true surface 
shape. The predicted interfacial deformations may however differ from the 
experimental measurements at  higher u2. 

Estimates for the material constants of STP and TLA227 at room temperatures 
based on the earlier oscillating rod experiments of Joseph and co-workers are listed 
in table 2. 

6.3. Experimental procedures 
The cylinder is filled with TLA 227 to 14.5 cm in depth and then STP is added on 
top to 7.0 cm in depth. The glycerol level is kept a few centimetres above the air-STP 
interface. The STP is not filled to a greater depth, because our analysis shows that 
flow conditions at positions away from the STP-TLA227 interface greater than one 
cylinder radius ( x  5.68 cm) are almost identical with flow conditions a t  an infinite 
distance from the interface. Moreover, unnecessarily larger depths of STP and 
TLA227 require a greater depth of glycerol; and greater depths of the test fluids and 
the glycerol cause larger fluctuations in applied torques as the cylinder undergoes 
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STP TLA227 

Density (g/cm3) 0.86 0.90 
Viscosity (P) 120.00 200.00 
a1 (g/cm) -0.90 - 50.00 
a2 (g/cm) 1.80 85.00 
k: 14.50 14.50 
k; 307.00 307.00 
C1 0.9735 0.9735 

TABLE 2 

FIGURE 4. Interfacial shapes between STP and TLA227 in fixed-amplitude oscillations; 
8 = 2.50 red. Frequency w (rad/s): (a) 5.10; ( 6 )  6.08; (c) 6.62; (d )  8.40; ( e )  10.71; (f, 14.29. 

oscillatory motions. After adding the fluids to the cylinder, they are allowed to sit 
for about a day to let all air bubbles escape. 

In  each experimental run, a fixed angle of twist 0 of the cylinder was selected, and 
the interfacial shape was observed for increasing values of the angular frequency w 
from zero to  a large value which was clearly beyond the limit of validity of the second- 
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FIGURE 5.  Interfacial shapes between STP and TLA227 in fixed-amplitude oscillations; 
8 = 3.98 rad. Frequency w (rad/s): ( a )  4.03; ( b )  4.83; (c) 6.08; (d) 6.62. 

order theory. Photographs of the interfacial shape were obtained using a camera 
installed exactly a t  the level of the undisturbed STP-TLA 227 interface and aligned 
with the centreline of the cylinder. At every angular frequency w ,  a sequence of six 
to ten pictures was taken a t  different angular positions of the cylinder. The position 
of the cylinder in a cycle can be determined by examining the position of the marked 
labels on the cylinder wall. 

Proper lighting and fast camera shutter speed play important roles in obtaining 
clear pictures of the Auid interface. The shutter is set a t  the fastest speed that film 
sensitivity allows. The difference in colours of the test fluids is not great, so that 
photographing the interfacial shape through the slightly opaque TLA227 presents 
a difficulty with regard to obtaining a sharply defined image of the interface. Various 
lighting arrangements were tried, and i t  was found that the best images of the 
interface were obtained for a lighting system consisting of a slit of intense light (about 
0.5 ern wide) across the cylinder at the location of the undisturbed interface. 

Each experimental run was performed as quickly as possible to avoid undesirable 
heating by fluid shearing and from the light source. After completion of each 
experimental run the fluids were allowed to sit for several hours before preparing for 
another run with a different angle of twist 0. 

Theoretical mean interfacial shapes are computed for different angles of twist 0 
and angular frequencies w in $7 .3  and compared with experimentally observed 
shapes. The relation between E ,  0 and w for sinusoidal oscillations of the cylinder is 

E = +A@. 
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FIGURE 6. Interfacial shapes between STP and TLA227 in fixed-amplitude oscillations ; 
0 = 5.48rad. Frequency w (rad/s): (a) 3.17; (b )  4.03; (c) 4.96; (d) 6.02; (e)  6.62; (f) 10.52. 

6.4. Qualitative observations 
Before comparing the experimentally measured profiles with those predicted from the 
analysis of $$4 and 5, we present here some general qualitative observations on the 
variation of the interfacial shape with changes in w and 0. 

Figures 4-6 show pictures of the STP-TLA227 interfacial shape in three experi- 
mental runs with angles of twist 0 = 2.50,3.98 and 5.48 rad respectively. Each figure 
illustrates the change in the interfacial shape as the angular frequency is increased 
at  a fixed value of the angle of twist. All the photographs in these three figures were 
taken with the cylinder at  or very close to the minimum-velocity position. As the 
angular frequency w increases, the centre of the interface falls below the undeformed 
location, the fluid interface near the outer perimeter climbs above the undeformed 
location, while the fluid interface at  the cylinder wall remains fixed a t  the undisturbed 
location. The trend continues to become increasingly pronounced, until at a high- 
enough angular frequency the interface begins to lose its smooth appearance. 
Wavelike irregularities start to form on the deformed STP-TLA227 interface ; and 
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4.10 rad/s 6.61 rad/s 

FIQURE 7 .  Dependence of the STP-TLA227 interfacial shape on the amplitude 8 of sinusoidal 
oscillations at fixed angular frequencies. 8 (red): (a) 2.50; ( b )  3.98; ( c )  5.48. 

finally as the frequency is increased further the interface breaks up and the two fluids 
tend to form an emulsion in the vicinity of the original interface. During the process 
of destruction of the STP-TLA227 interface, the air-STP interface remains smooth 
and assumes a paraboloid-like shape. 

The photographs in figure 7 show the changes in the STP-TLA227 interfacial shape 
with increasing angle of twist, keeping angular frequency w fixed. A t  a constant 
frequency the interface becomes increasingly more deformed as the angle of twist is 
increased. If the angular frequency is high enough, break-up of the interface takes 
place as the amplitude of the motion is increased. 

In all experimental runs, the time-dependent part of the deformation of the 
STP-TLA227 interface is observed to be small (almost negligible) compared with 
the mean part. The time-dependent part varies at  a frequency twice as large as the 
frequency of the cylinder, and is better observed at the air-STP interface, where the 
ratio of the time-dependent part to the mean is slightly higher than the ratio for 
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( A  ) tB) 
FIGURE 8. The time-dependent versus the mean contributions in the STP-TLA227 interfacial 
shapes: ( A )  near maximum velocity; ( B )  near minimum velocity. 0 = 3.98 rad. w (rad/s): ( a )  6.08; 
( b )  6.62. 

the STP-TLA227 interface, Figures 8 and 9 show the shapes of both interfaces at  times 
when the speed of the cylinder is nearly a t  its maximum value (part A )  and is nearly 
zero (part B )  for various angles of twist and angular frequencies. At the lower angle 
of twist (e.g. figure 8)  it is difficult to identify any difference between the shapes at  
two extremes in the cycle, but at the higher angle of twist (e.g. figure 9) the difference 
is quite evident, particularly at the air-STP interface. 



Interfacial shapes between two rotating Jluids 53 

(A)  (B) 

FIQURE 9. The time-dependent versus the mean contributions in the STP-TLA227 interfacial 
shapes: (A) near maximum velocity; ( B )  near minimum velocity. 8 = 5.48 rad. o (rad/s): (a) 6.02; 
(6) 10.52. 

7. Results 
7.1.  First-order velocity distributions 

I n  $3.2 we showed that, when w approaches zero, the first-order azimuthal velocity 
distribution is a solid-body oscillation. When w =k 0, the velocity distribution will 
deviate from this asymptotic form. It is best to illustrate the deviation by plotting 
the distributions of 2lwt,(R, 2 ;  w)l and phase lag 6,(R, 2 ;  w ) .  The more these 
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FIGURE 10. Radial distributions of the modulus and the phase lag of the first-order azimuthal 
angular velocity w*(R,  2; w )  at w = 3.173 rad/s. -, 2 ( w * ( ;  ---, 6. (a) z/a+ + m ;  (b)  z/a = 0; ( e )  
z/a+ -a. 
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FIQURE 1 1 .  Axial distributions of the modulus 2 Iw*( (-) and the phase lag 6(---) of the first- 
order azimuthal angular velocity at w = 3.173 rad/s. Asymptotic values at  infinity: -, 2Iw*[  ; 
-. -, 6. 
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FIGURE 12. Radial distributions of the modulus and the phase lag of the first-order azimuthal 

angular velocity w*(R, 2; w )  at w = 6.082 rad/s. For legend see figure 10. 
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FIGURE 13. Axial distributions of the modulus 2[0*1 and the phase lag 6 of the first-order azimuthal 
angular velocity at w = 6.082 rad/s. For legend see figure 11. 
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FIGURE 14. Radial distributions of awf1,(R, 2; w ) ,  wheref(,,(R, 2 ;  w )  is the forcing function in (5.2a) 
with j = 1 and w = 3.173 rad/s. -, f u , ( R , Z ; w )  is computed using (5.11), with L = 10 and 
M = N = 9; ---, f@, 2; w )  is approximated by (5.17), with N = M = 10. (At small w ,  e.g. 
w = 3.173 rad/s, the curves of the two families ((5.11) and (5.17)) coincide.) 

0.06 0.05 t 
(R.  Z ;  

0 
0.04 - 

0.03 - 

Rla 

FIGURE 15. Radial distributions of awf2)(R, 2;  w ) ,  wheref(,,(R, 2 ;  w )  is the forcing function in ( 5 . 2 ~ )  
withj = 2 and w = 3.173 rad/s. For legend see figure 14. 

functions differ from unity and zero respectively, the larger the discrepancy between 
the distribution of J&)(R, 2, t ;  w )  and the solid-body oscillation (3.29). 

With the fluid properties given in table 2, we will compute, using the results given 
in $3.1, the function o * ( R , Z ; w )  = w & ( R , Z ; w )  in whichj = 1 when Z 2 0 a n d j  = 2 
when 2 < 0. The truncation number N ,  appearing in (3.20a,b), is taken to be 10. The 
modulus 21w*(R,Z;w)f and phase lag 6 ( R , Z ; w )  are next computed and plotted in 
figures 10-13. Figure 10 shows radial distributions of 2)w*(R, 2 ;  w)l and S(R, 2 ;  w )  at 
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FIGURE 16. Radial distributions of awju)(R, 2;  w )  with j = 1 and 
w = 6.082 radls. For legend see figure 14. 
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FIGURE 17. Radial distributions of awju,(R,Z;w) withj  = 2 and 

w = 6.082 rad/s. For legend see figure 14. 

2 = k 00 and a t  the undisturbed interface, for w = 3.173 rad/s. Figure 1 1  shows axial 
distributions of these functions at  R/a = 0.05, 0.35 and 0.75 for the same angular 
frequency w .  The expressions for velocities in (3.20) and (3.21) should agree at  2 = 0 
for all R / a  E [0,1]. In fact we achieve agreement with the approximation associated 
withN = 10.Figures lOandl l  demonstratethat yj)(R,Z,t;w), withw = 3,173 rad/s, 
deviates only mildly from solid-body oscillation V = R sinwt. As the angular 
frequency w is increased, this deviation becomes more pronounced. Figures 12 and 
13 show the corresponding distributions a t  w = 6.082 rad/s. 

At any particular angular frequency o, the difference between w * ( R , Z ; w )  and 
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R fa' 

FIGURE 18. Representation of the components of the vector , defined in (5.49a), by the truncated El 
series 

at w = 3.173 rad/s. 

solid-body oscillation is largest along the centreline of the cylinder, and zero along 
the cylinder wall. The 2-dependence of w&(R, 2 ;  w )  is significant only in the vicinity 
of the STP-TLA227 interface. As seen in figures 11 and 13, the functions W ( ~ ? ( R ,  2;  w )  
have nearly attained, at distance about 0.6a away from the undisturbed interface, 
their values at 2 = & 03. 

7.2. Second-order mean motion 
We now compute the forcing function f ( j ) ( R ,  2 ;  w )  in (5.2a) for the stream function 
$(,)(R, 2; w )  of the mean motion. To illustrate the validity of the approximations 
in (5.9) and (5.10) we compute the dimensionless function awf(n(R, 2 ;  w ) ,  using the 
truncated version of (5.11), in which the limits of summations on I ,  m and n sub- 
scripts are L = 10 and M = N = 9 respectively. The above function is denoted by 
aoj$*8~8)(R,Z;w). 

Radial distributions of awj'(F9 9 7  s, (R ,  2 ;  w )  at the undisturbed interface and at  
distances 0.2a and 0.4a away from the undisturbed interface are plotted with solid 
lines in figures 14 and 15, in which w = 3.173 rad/s, and in figures 16 and 17, in which 
o = 6.032 rad/s. The approximate version for j"~ 9 7  9, (R,  2 ;  w )  is the expression 
(5.17), where the limits of summations are N = M = 10. This approximate function 
is also used to compute awfv,(R, 2;  w )  which is plotted with dashed lines in figures 
14-17. At low angular frequency w ,  e.g. o = 3.173 rad/s, the approximate function 
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FIGURE 19. Representation of the components of the vector , definedin (5.493), by the truncated El 
series 

at w = 3.173 rad/s. 

(5.17) gives more or less the same values as the original function (5.11). The dashed 
lines coincide with the solid lines in figures 14 and 15. At larger w some discrepancy 
between the approximate and original functions f( j ,(R, 2 ;  w )  is noticeable. The 
discrepancy is most conspicuous along the interface, and is smaller a t  distances 
further away from the interface. Figures 16 and 17 show the distributions of the 
approximate and original functions f(,(R, 2 ;  w )  a t  w = 6.082 rad/s. In  these figures, 
a small discrepancy is observed between the distributions along the undisturbed 
interface, but the discrepancies a t  distances 0 . 2 ~  and 0 . 4 ~  away from the interface 
are too small to be graphically distinguishable. 

The discrepancy for TLA227 on figure 17 is relatively larger than the one for STP 
on figure 16. This is expected because, as w increases, A&)(w) grows in magnitude 
faster than A&)(w); therefore the approximation in (5.9) for TLA227 becomes less 
accurate before the one for STP does. In  computing the mean motion ~(j)(R, 2 ;  w )  
a t  second order, we will use the approximate expression (5.17) with N = M = 10 for 
ftn(R, 2; w ) ,  and (3.20u, 6 )  with N = 10. 

Once the forcing function f(n(R, 2 ;  w )  is known, the integrals in (5.8) and (5.19) can 
be evaluated, using Simpson's rule, to determine the particular function 
v,bp(j)(R,2;w),  which is defined by (5.1) and (5.2). On the other hand, the stream 

3 F L Y  145 
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I a 

FIGURE 20. Representation of the components of the vector a t  w = 6.082 rad/s. 

function Y,(,,(R, 2 ;  w ) ,  which satisfies the homogeneous problem (5.2) where 
f ( j , (R ,  2 ;  w )  = 0,  is given by the biorthogonal series (5.20). Since the eigenvaluesp, are 
known (Yo0 1977), it remains for us to  find the coefficients A ,  and B, in (5.20). TO 
this end, we combine A ,  and B,, using (5.50), into new unknowns a, and b,. The 
new unknowns can be calculated from (5.54), and from solving a truncated system 
of linear equations in (5 .533) .  

[;:I and 
The procedure for obtaining the unknowns a, and 6 ,  requires the vectors 

[ 2’ , defined in (5.49a, b) .  Since O& and $p(n have been completely determined, it 

is possible to derive explicit expressions for components of these vectors, as given 
in the Appendix. We note that since the components yl, yz, c and % are real, the co- 
efficients a, and a(-,), and b ,  and b(-,) are complex-conjugate pairs. For practical pur- 
poses, we only need to compute the first ten coefficients a, and b,, n = 1, 2,.  . . , 10. 

The series on the left-hand sides of (5.52a,b), with N = 10, are already good 
approximations for the vectors y and Y. In figures 18 and 19 we plot dimensionless 
components of 

z[y.] and c / a  
YZ 
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FIGTJRE 21. Representation of the components of the vector at  w = 6.082 rad/s. El 

for w = 3.173 rad/s by continuous and broken lines, while values of the corresponding 
biorthogonal series 

are plotted with dots. Figures 20 and 21 show graphs of the above functions a t  
w = 6.082 rad/s. We observe, from these four figures, that the series in (5 .526)  
approximates to P more closely than the series in (5 .52a)  does to y.  

Given a, and b,, we can calculate A ,  and B,, using the inversion (5 .51 ) .  In  this 
way, the stream function $rH(j) is determined. For each j = 1 , 2 ,  level lines of @H(j) 

form a series of alternate eddies of opposite direction. Each series starts a t  the 
interface with a ha.lf-eddy in clockwise rotation. The magnitude of ~ H u )  decreases 
exponentially with 121. Typical level lines of kHu) are shown in figures 22 and 23, 
where the angular frequency w is 3.173 rad/s. 

The total stream function $( j ) (R ,  2 ;  w )  of the mean motion at second order is found 
by adding @H(j) to ~ p ( j , .  For each j = 1 , 2 ,  the level lines of @u) form a single eddy. 
Figures 24 and 25 show these level lines a t  w = 3.173 rad/s. The two eddies, one being 
above and one below the interface, rotate in the same (counterclockwise) direction. 
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FIGURE 22. Level lines at o = 3.173 rad/s for the upper biharmonic series ( W / ~ ~ ) + H ( ~ > .  

7.3. Mean interfacial shape 

Since the interfacial tension is zero, the mean interfacial shape is obtained from the 
relation 

- 

where k is given by (5.95a, b ) .  The relation between E and angular frequency w and 
angle of twist 0 of the cylinder can be shown, from the sinusoidal oscillations of the 
cylinder, to be 

E = %@. (7.2) 

Substituting (7.2) in (7 .1) ,  we get 

(7.3) 

The theoretical mean interfacial shape k ( R / a ;  € ) / a  will be computed at  different 
angles of twist and angular frequencies, and compared with the ones observed in the 
experiments. Figures 26-28 show series of mean interfacial shapes #@/a; € ) / a  for 
increasing sequences of w ,  at angles of twist 0 = 2.50, 3.98 and 5.48 rad respectively. 
Table 3 gives the angular frequency w and the corresponding E for each case, from 
(a) to  ( e ) ,  of these figures. 
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FIGURE 23. Level lines at w = 3.173 rad/s for the lower biharmonic series ( ~ / a ~ ) $ ~ ( ~ ) .  

In the above figures, the theoretical predictions are plotted with dotted lines, and 
the observed mean interfacial shapes are shown as solid lines. Careful study of these 
graphs reveals the following results. 

Our theoretical prediction, with interfacial tension being neglected, is that the 
curvature of the STP-TLA227 interface is convex at  the centre of the cylinder and 
concave at the edge. In all cases, except that in figure 26(e), predicted interfacial 
shapes fall slightly below the undisturbed level (2 = 0) at the cylinder wall (R = a). 
It is only a coincidence in figure 26 (e) that the theoretical shape joins the wall at  2 = 0. 
The experimental interfaces also have the characteristic of being convex at  the 
centerline, and concave at the outer edge. However, the edge of a real STP-TLA 227 
interface is observed to be fixed, so that when the real interface tends to drop below 
the undisturbed level, its curvature becomes convex. This secondary change in 
curvature in a small neighbourhood of the cylinder wall is caused by the action of 
interfacial tension coupled with the fixed-edged condition, and can be seen in case 
(e) of figures 26 and 27. 

At  each angle of twist, the first graph (a) shows a good agreement between our 
theory and experiments. As w (hence E )  is increased, the discrepancy between 
second-order theoretical prediction and experimental measurements grows, The 
predicted interface, however, retain shapes qualitatively the same as the experimental 
ones when w is less than 6.62 rad/s. 

One way to check the validity of a second-order theory is to study the change of 
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FIGURE 24. Level lines at w = 3.173 rad/s for the upper stream function ( w / a 3 )  

a physical interfacial shape caused by a variation in angle of twist 0. A physical 
interfacial shape is well monitored by a second-order theory only when the physical 
interfacial shape, itself, is indeed proportional to e2, and therefore to 02. We thus 
compare physical interfacial shapes at  a fixed angular frequency but with different 
angles of twist. Close examination of the solid lines in the following pairs of graphs 
2 7 ( a )  and 2 8 ( b ) ,  26(c) and 2 7 ( d ) ,  and 2 6 ( d )  and 27(e)  reveals that these physical 
interface shapes at the same angular frequency, but with different angles of twist, 
are not exactly proportional to each other. A general trend, observed from these pairs 
of graphs, is that the intersection between a physical interfacial shape and the line 
2 = 0 is shifted nearer to the cylinder wall as 0 is increased. The average value of 
e in these cases is roughly 10 rad2/s. Experimental data have thus indicated that at  
these values of 0 and e ,  there is noticeable contribution from terms o(e2) .  

7 .4 .  Region of validity of the analysis 

We shall follow the approach of Joseph et al. (1973) and use the criterion 

ff41 (7 .4)  

to estimate the region of validity for our second-order theory. The Froude number 
f is defined here as follows : 

where Q2 = :c2 = +0202 is the mean-square angular velocity and 1 is a characteristic 
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FIGURE 25. Level lines at w = 3.173 rad/s for the lower stream function ( w / a 3 )  @(2). 

lengthscale, dependent on fluid properties, angular frequency w and the cylinder 
radius a. This lengthscale can be chosen as 

1 = & 0 2 w 2  [ah*( 1 ; w)l  , 

where h*(R;w) has been introduced in (5.99). Our analysis does not show a simple 
expression for h*(a; w ) .  Nevertheless, h*(a; o) can be computed, using the formula 

h=( i ;w)  a 
w2 49 

h*(l ; w )  = 

Substitution of (7.7) in (7.6) yields 

1 =- 
8 

(7.7) 

In particular for the STP-TLA227 interface, our calculations have consistently 
shown that h(1; w )  < 0 for small w ,  and therefore by (7.8), we have 

a2e2w2 
1>-. 

329 
(7.9) 

The criterion (7.4) and the definition (7.5) moreover imply that, for a given 0, larger 
1 requires smaller limiting w,. Hence, if we take 

(7.10) 
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FIGURE 26. The mean interfacial shapes R/a between STP and TLA227, at angle of twist 
0 = 2.50 rad. See table 3 for details. ---, theoretical predictions; -, experimental observations. 

we will obtain a larger limiting value for w,. Using (7.5) and (7.6) in (7.4), we find 

(7.11) 

Limiting values w, for some specific angles of twist used in the experiments are given 
in table 4. These limits are consistent with our results in 3 7.3. 

This work was supported by the U.S. Army Research Office. 

Appendix. Expressions for the components of y and 

that at  z = 0 

as defined by (5.49) 
Using the first-order solution (3.19), (3.20) and the approximations (5.9), we find 
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FIQURE 27. The mean interfacial shapes R/a between STP and TLA227, a t  angle of twist 
0 = 3.98 rad. See caption of figure 26 and table 3 for details. 

and w&,, with subscript ( 2 )  and coefficient D, 
replacing subscript ( 1 )  and coefficient Cn respectively. Moreover, (4.13 b) leads us to 

can be expressed similarly as w&, 

z R [ S , R Z [  q]] = [2R3(+ GTR + w:Z w y R )  El]. (A 2 )  

Substituting (A 1 )  into (A 2 ) ,  and rearranging terms on the right-hand side, (A 2 )  may 
be written in the form 

A(2) JZ(iA(,) R)  - 
A n ( R )  = -2Run J1 ( un- f) Re { J,(iA(,,a) Dn Z(z)i 
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FIQURE 28. The mean interfacial shapes &/a between STP and TLA227, at angle of twist 
8 = 5.48 rad. See caption of figure 26 and table 3 for details. 

/ 
-0.4L 

Angular frequency o (rad/s) 
E (rad2/s) 

Figure 

26 

27 

28 

0 (rad) (a )  ( b )  ( c )  (4 (el 

2.50 5.10 5.82 6.08 6.62 8.40 
6.37 7.27 7.60 8.27 10.50 

3.98 4.03 4.83 5.55 6.08 6.62 
8.02 9.61 11.04 12.10 13.17 

5.48 3.17 4.03 4.96 6.02 6.62 
8.69 11.04 13.59 16.49 18.14 

TABLE 3 

8 (rad) 2.50 3.98 5.48 

w, (rad/s) 9.65 6.06 4.40 

TABLE 4 
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We next recall the expression (5.18) for $(j)p and the differentiation operator 

69 

defined in $5 as 

and 

Using (5.18), (A 3),  (A 5) and (A 6) in (5.49a,b), we finally obtain the following 
expressions : 

n=l m=z 

n-1 m-2 
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